Acta Crystallographica Section B
Structural
Science
ISSN 0108-7681

Masanori Yasui, Yoshimitsu Ishikawa, Takayuki Ishida, Takashi Nogami and Fujiko Iwasaki*

Department of Applied Physics and Chemistry, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

Correspondence e-mail: fuji@pc.uec.ac.jp
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(hfac)-copper(II) complexes bridged by pyrimidines showing magnetic interactions

Crystals of bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)bispyrimidinecopper(II) (1), bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)bis(4-methylpyrimidine)copper(II) (2), bis-(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)bis(quinazoline)copper(II) (3) showed ferromagnetic interactions at extremely low temperature. Crystal structure analyses revealed that these complexes were catena-bis(1,1,1,5,5,5-hexafluoropen-tane-2,4-dionato) $\left[\mu\right.$-pyrimidine- $\left.N^{1}: N^{3}\right]$ copper(II), $\left[\mathrm{Cu}(\mathrm{hfac})_{2^{-}}\right.$ $\left.(\mathrm{pm})_{2}\right]_{n}$, catena-bis(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)[μ-4-methylpyrimidine- $\left.N^{1}: N^{3}\right] \operatorname{copper}(\mathrm{II}), \quad\left[\mathrm{Cu}(\mathrm{hfac})_{2}(4-\mathrm{Me}-\right.$ $\mathrm{pm})]_{n}$, and catena-bis(1,1,1,5,5,5-hexafluoropentane-2,4dionato) $\left[\mu\right.$-pyrimidine- $\left.N^{1}: N^{3}\right]$ copper(II), $\quad\left[\mathrm{Cu}(\mathrm{hfac})_{2}(\mathrm{qz})\right]_{n}$, for (1), (2) and (3), respectively. In (1) and (2) the pyrimidines bridge the Cu atoms with an axial-equatorial mode to form one-dimensional spiral chains. Complex (3) also forms a onedimensional chain structure. The coordination mode of (3) is axial-axial at room temperature, while axial-equatorial at 120 K . On the other hand, the structure of the other modification of the 4-methylpyrimidine complex (4), showing paramagnetic properties, was revealed to be a trinuclei complex bridged by two 4-methylpyrimidines, tris[bis-(1,1,1,5,5,5-hexafluoropentane-2,4-dionato)copper(II)][bis- μ -4-methyl-pyrimidine- $N^{1}: N^{3}$. The chain structures with an axial-equatorial coordination mode of the bridging organic moieties should play an important role in the appearance of the ferromagnetic interactions.

1. Introduction

Many organic coordination compounds containing transition metals as spin sources have been studied to develop magnetic interactions in organic compounds. Some copper(II) transition complexes, coordinated pyrimidines or related compounds which have meta-coordination positions, showed magnetic interactions (Ishida et al., 1995, 1996, 1997). The dipyrimidinecopper(II) dinitrate complexes $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{pm})_{3}$ and $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pm})_{2}(\mathrm{pm}=$ pyrimidine $)$ showed ferromagnetic and antiferromagnetic interactions, respectively. Crystal structure analyses revealed that these complexes formed one-dimensional coordination polymers bridged by pyrimidines (Yasui, Ishikawa et al., 2001). The differences between the magnetic interactions depend on the coordination types of the meta- N atoms of the bridging pyrimidine: the axial-equatorial coordination for $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{pm})_{3}$ shows ferromagnetic interactions and the equatorial-equatorial coordination for $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pm})_{2}$ shows antiferromagnetic interactions. Complexes of $\mathrm{Cu}^{\mathrm{II}}(\mathrm{hfac})_{2}(\mathrm{hfac}=$ 1,1,1,5,5,5-hexafluoropentane-2,4-dionate) coordinated by pyrimidine (1), 4-methylpyrimidine (2) and quinazoline (3)

Received 13 March 2001
Accepted 14 August 2001
showed ferromagnetic interactions at extremely low temperature. In this paper structure analyses were performed on these complexes in order to elucidate the relationships between crystal structures and magnetic characters. Structural studies at low temperatures ($100 / 120 \mathrm{~K}$) were also carried out owing to the large thermal displacements of trifluoromethyl groups at room temperature. X-ray analysis revealed that the complex with 4-methylpyrimidine crystallized into two modifications, (2) and (4); the magnetic properties measured on these crystals separately showed paramagnetic properties for (4), in contrast to ferromagnetic for (2).

(1) $\mathrm{R}=\mathrm{H}$
(2) $R=\mathrm{CH}_{3}$

(4)

2. Experimental

Complexes (1), (2) and (3) were prepared by refluxing a dichloromethane solution of $\mathrm{Cu}(\mathrm{hfac})_{2}$ and the bridging ligands in a stoichiometric ratio (Ishida et al., 1995, 1996). The polycrystalline samples were recrystallized from dichloro-methane-hexane solutions. Crystals of (2) and (4) were obtained in the same crystallization batch with different habits. These crystals were separated under the microscope and were subjected to the X-ray diffraction and magnetic studies separately. Intensity data were measured using a Rigaku AFC-7R diffractometer with a graphite monochromator. Intensity measurements at 120 or 100 K were carried out with an N_{2} extraction gas-flow device using different crystals. The structures were solved by direct methods using the programs listed in Table 1. The H atoms at low temperatures were obtained from difference-Fourier maps. The structures were refined by full-matrix least-squares
with anisotropic temperature factors for non-H atoms and isotropic ones for H atoms. For the refinements using intensity data at room temperatures, most H atoms were treated as riding models. No refinements of the disordered structures were performed, although thermal displacements of the F atoms at room temperature were very large. In the case of (1a) and ($1 b$) refinements with the space group $I 4_{1} / a c d$, which is the higher space group of $I 4_{1} c d$, failed. The space group $I 4_{1} /$ acd shows a systematic abscence in the $h k 0$ zone as h or $k=2 n+1$. These reflections were rather weak, but significantly observed

Figure 1
ORTEPII (Johnson, 1976) drawings of the complexes ($1 b$) and ($2 b$) with atom numbering. The displacement ellipsoids for the non- H atoms are drawn at 50% probability and the H atoms are drawn as spheres with a radius of $0.1 \AA$. (a) (1b), symmetry codes: (i) $y, \frac{1}{2}-x, \frac{1}{4}+z$; (ii) $\frac{1}{2}-y, x, z-\frac{1}{4}$. (b) $(2 b)$, symmetry codes: (i) $\frac{3}{4}-y, \frac{1}{4}+x, \frac{1}{4}+z$; (ii) $y-\frac{1}{4}, \frac{3}{4}-x, z-\frac{1}{4}$.

Table 1
Experimental details.

Table 1 (continued)

	(3b) (120 K)	(4a) (294 K)	(4b) (100 K)
$V\left(\AA^{3}\right)$	2108.4 (13)	1437.8 (7)	1345.8 (6)
Z	4	1	1
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.915	1.872	2.000
Radiation type	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
No. of reflections for cell parameters	25	24	25
θ range (${ }^{\circ}$)	12.9-15.9	10.1-13.8	12.7-16.3
$\mu\left(\mathrm{mm}^{-1}\right)$	1.172	1.275	1.362
Temperature (K)	120	294	100
Crystal form, color	Pillar, green	Pillar, green	Pillar, green
Crystal size (mm)	$0.210 \times 0.20 \times 0.10$	$0.250 \times 0.130 \times 0.10$	$0.250 \times 0.120 \times 0.10$
Data collection			
Diffractometer	Rigaku AFC-7R	Rigaku AFC-7R	Rigaku AFC-7R
Data collection method	$\omega-2 \theta$ scans	$\omega-2 \theta$ scans	$\omega-2 \theta$ scans
Absorption correction	Numerical	Psi-scan	Numerical
$T_{\text {min }}$	0.799	0.811	0.823
$T_{\text {max }}$	0.894	0.883	0.895
No. of measured, independent and observed parameters	5064, 4838, 3317	6904, 6586, 3590	6750, 6185, 5044
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.0382	0.0167	0.0165
$\theta_{\text {max }}\left({ }^{\circ}\right)$	27.50	27.48	27.50
Range of h, k, l	$0 \rightarrow h \rightarrow 15$	$0 \rightarrow h \rightarrow 15$	$-11 \rightarrow h \rightarrow 14$
	$-15 \rightarrow k \rightarrow 0$	$-16 \rightarrow k \rightarrow 17$	$-15 \rightarrow k \rightarrow 17$
	$-19 \rightarrow l \rightarrow 19$	$-14 \rightarrow l \rightarrow 12$	$-13 \rightarrow l \rightarrow 12$
No. and frequency of standard reflections	3 every 150 reflections	3 every 150 reflections	3 every 150 reflections
Intensity decay (\%)	2.28	8.13	2.79
Refinement			
Refinement on	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.0454, 0.1346, 1.023	0.0561, 0.1967, 1.028	0.0345, 0.0932, 1.026
No. of reflections and parameters used in refinement	4838, 369	6586, 430	6185, 466
H -atom treatment	Refined	Fixed	Refined
Weighting scheme	$\begin{aligned} w & =1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0599 P)^{2}\right. \\ & +2.1059 P], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} w & =1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0942 P)^{2}\right. \\ & +0.5397 P], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} w & =1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0418 P)^{2}\right. \\ & +1.0143 P], \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$
$(\Delta / \sigma)_{\max } \quad\left(\mathrm{A}^{-3}\right)$	0.000	0.007	0.008
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.236, -1.004	$0.736,-0.426$	$0.62,-0.584$
Extinction method	None	None	None

Computer programs used: AFC (Rigaku Corporation, 1994), TEXSAN (Molecular Structure Corporation, 1992), SIR92 (Altomare et al., 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).
with $I / \sigma(I)>10$. Crystal data, details concerning data collection and structure refinements are listed in Table 1. ${ }^{\mathbf{1}}$

3. Results and discussion

3.1. Structures of (1) and (2)

The molecular structures of $(1 b)$ at 120 K and $(2 b)$ at 100 K , along with the atomic numbering, are shown in Fig. 1. Selected bond distances and angles at low temperatures are listed in Table 2. For each complex, the Cu atom is coordinated by O 1 , $\mathrm{O} 3, \mathrm{O} 4$ and N 1 equatorially, and $\mathrm{N} 2^{\mathrm{i}}$ [(i) $y, \frac{1}{2}-x, \frac{1}{4}+z$ for (1) and (i) $\frac{3}{4}-y, \frac{1}{4}+x, \frac{1}{4}+z$ for (2)] and O 2 axially to form a sixcoordinated octahedral complex. Therefore, two hfac groups

[^0]coordinate the Cu atom with a cis configuration. The pyrimidine moiety bridges the $\mathrm{Cu} \cdots \mathrm{Cu}$ at the meta N atoms with equatorial and axial positions to form a one-dimensional chain. In (1b) the axial $\mathrm{Cu} 1-\mathrm{O} 2$ and $\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$ distances are 2.346 (3) and 2.387 (3) A , respectively. The corresponding values for (2b) are 2.2861 (13) and 2.4957 (15) \AA for $\mathrm{Cu} 1-\mathrm{O} 2$ and $\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$, respectively. The longer $\mathrm{Cu} 1-\mathrm{N}^{\mathrm{i}}$ distance of $(2 b)$ than $(1 b)$ is due to the steric effect of the methyl group. Dihedral angles related to the pyrimidine planes are also listed in Table 2. The inclination of the pyrimidine plane to the equatorial plane of $(1 b)$ is slightly different from that of $(2 b)$.

Stereoscopic views of the coordination polymer chains of $(1 b)$ and (2b) are shown in Fig. 2. In the crystals of (1) the pyrimidine groups bridge the Cu atoms to form a 4_{3} spiral chain along the c axis. The 4_{1} spiral chain is also generated from the symmetry operation of the space group. The spiral chain of (2) shown in Fig. 2 has a 4_{1} symmetry. These
complexes are the first bis(hfac) Cu complexes having polymer chain structures bridged by N atoms from the result of the search of the Cambridge Structural Database (CSD; Allen \& Kennard, 1993).

3.2. Structure of (3)

In the crystals of (3), two independent Cu atoms, Cu 1 and Cu 2 , occupy the inversion centers. The structures of these complexes along with the atomic numbering are shown in Fig. 3. Selected bond distances and angles at 296 and 120 K are listed in Table 3. The coordination around the Cu atom is two trans hfac groups and two quinazolines. The quinazoline molecule bridges Cu 1 and Cu 2 at the meta N atoms to form a one-dimensional chain. A stereoscopic view of the coordination polymer chain of $(3 b)$ is shown in Fig. 4. At room temperature, the coordination lengths of $\mathrm{Cu} 1-\mathrm{O} 1, \mathrm{Cu} 1-\mathrm{O} 2$ and $\mathrm{Cu} 1-\mathrm{N} 1$ are $2.002(2), 2.070(3)$ and $2.182(4) \AA$, respectively. The coordination lengths of $\mathrm{Cu} 2-\mathrm{O} 3, \mathrm{Cu} 2-\mathrm{O} 4$ and $\mathrm{Cu} 2-\mathrm{N} 2$ are 1.963 (2), 1.965 (3) and 2.464 (3) \AA, respectively. For both Cu 1 and Cu 2 atoms, the two hfac groups coordinate equatorially and two quinazoline moieties coordinate axially. That is, the quinazoline ring bridges Cu atoms with the axial-axial coordination. The complexes showing

Figure 2
Stereoscopic views of the coordination polymers of $(a)(1 b)$ and $(b)(2 b)$.
ferromagnetic interactions with bridging meta-N atoms in the polymer chains, analyzed so far, have shown the axialequatorial coordination type.

However, the coordination mode changed drastically at 120 K . The length of $\mathrm{Cu} 1-\mathrm{N} 1$ reduced to 2.043 (3) from 2.182 (4) \AA and the length of $\mathrm{Cu} 1-\mathrm{O} 2$ increased to 2.189 (3) from 2.070 (3) \AA. That is, the coordination of the quinazoline changes from an axial position to an equatorial one at 120 K . On the other hand, the coordination type around the Cu 2

Figure 3
ORTEPII (Johnson, 1976) drawings of the complexes of (3b) with atom numbering. The displacement ellipsoids for non- H atoms are drawn at 50% probability and the H atoms are drawn as spheres with a radius of $0.1 \AA$.. (a) Complex of Cu 1 ; (b) complex of Cu 2 . Symmetry codes: (i) $-x,-y,-z$; (ii) $-x, 1-y,-z$.

Table 2
Selected bond lengths and angles $(1 b)$ and $(2 b)\left(\AA,{ }^{\circ}\right)$.

	$(1 b)$	$(2 b)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.952(3)$	$1.9558(12)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.346(3)$	$2.2861(13)$
$\mathrm{Cu} 1-\mathrm{O} 3$	$1.989(3)$	$1.9970(13)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$1.949(3)$	$1.9558(12)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.029(4)$	$2.0212(15)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.387(3)$	$2.4957(15)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$86.25(12)$	$87.20(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 3$	$91.29(12)$	$90.70(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$176.22(11)$	$178.24(5)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.33(13)$	$91.63(6)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$84.84(13)$	$82.95(5)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	$82.04(11)$	$84.19(5)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 4$	$97.24(12)$	$94.49(5)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$89.58(13)$	$93.02(6)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$167.66(12)$	$166.81(5)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4$	$90.62(13)$	$89.98(5)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$171.04(14)$	$176.28(6)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$89.63(12)$	$87.17(5)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1$	$87.27(13)$	$87.77(5)$
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$91.92(13)$	$95.46(5)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$99.14(11)$	$96.00(5)$
$\mathrm{Plane} 1-\mathrm{pm}$	$80.56(11)$	$82.87(4)$
Plane 2-pm	$37.12(15)$	$31.56(7)$
Plane 3-pm	$40.28(14)$	$35.17(6)$
Plane 1-pm	$29.44(16)$	$38.29(6)$
Plane 2-pm	$88.22(10)$	$86.89(12)$
Plane 3-pm	$78.11(9)$	$76.41(11)$
pm-pm	$84.82(12)$	$86.52(5)$

Plane 1: $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{O} 2$; plane 2: $\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 4$; plane 3: $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{O} 3-\mathrm{O} 4-\mathrm{N} 1$. Symmetry codes: (i) $y, \frac{1}{2}-x, \frac{1}{4}+z$ for (1b); (i) $-y+\frac{3}{4}, x+\frac{1}{4}, z+\frac{1}{4}$ for (2b).
atom was kept during the temperature change. These facts show that the quinazoline ring bridges Cu atoms with an axialequatorial coordination mode at 120 K and an axial-axial mode at room temperature. The axial-equatorial coordination is favored to the appearance of the ferromagnetic interaction observed at extremely low temperature.

Preliminary measurements showed gradual changes of the lattice constants from 296 to 100 K . The lattice constants, measured with some crystals which were obtained in the same crystallization batch, showed no significant change compared

Table 3
Selected bond lengths and angles (3a) and (3b) ($\left.\AA,{ }^{\circ}\right)$.

	$(3 a)(296 \mathrm{~K})$	$(3 b)(120 \mathrm{~K})$
$\mathrm{Cu} 1-\mathrm{O} 1$	$2.002(2)$	$2.011(2)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$2.070(3)$	$2.189(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.182(4)$	$2.043(3)$
$\mathrm{Cu} 2-\mathrm{O} 3$	$1.963(2)$	$1.957(2)$
$\mathrm{Cu} 2-\mathrm{O} 4$	$1.965(3)$	$1.968(2)$
$\mathrm{Cu} 2-\mathrm{N} 2$	$2.464(3)$	$2.439(3)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.247(4)$	$1.272(4)$
$\mathrm{O} 2-\mathrm{C} 3$	$1.241(5)$	$1.248(4)$
$\mathrm{O} 3-\mathrm{C} 6$	$1.245(4)$	$1.260(4)$
$\mathrm{O} 4-\mathrm{C} 8$	$1.253(5)$	$1.258(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.363(5)$	$1.364(4)$
$\mathrm{N} 1-\mathrm{C} 12$	$1.318(5)$	$1.325(4)$
$\mathrm{N} 2-\mathrm{C} 11$	$1.295(5)$	$1.308(4)$
$\mathrm{N} 2-\mathrm{C} 18$	$1.403(5)$	$1.397(4)$
		$87.37(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$88.73(11)$	$92.64(9)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$91.27(11)$	$88.76(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$88.77(11)$	$91.24(11)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$91.23(11)$	$96.29(11)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$96.71(13)$	$83.71(11)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$83.29(13)$	$92.08(10)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4$	$91.78(11)$	$87.92(10)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4^{\mathrm{ii}}$	$88.22(11)$	$91.32(11)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 2$	$91.35(12)$	$88.67(10)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 2^{\mathrm{ii}}$	$88.65(12)$	$88.68(10)$
$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{N} 2$	$88.36(11)$	$91.32(10)$
$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{N} 2^{\mathrm{ii}}$	$91.64(11)$	

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x,-y+1,-z$.

Table 4
Selected bond lengths and angles (4b) ($\AA,{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.9715(17)$	$\mathrm{Cu} 2-\mathrm{O} 4$	$1.9393(18)$
$\mathrm{Cu} 1-\mathrm{O} 2$	$1.9509(17)$	$\mathrm{Cu} 2-\mathrm{O} 5$	$1.9379(17)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.437(2)$	$\mathrm{Cu} 2-\mathrm{O} 6$	$1.9727(18)$
$\mathrm{Cu} 2-\mathrm{O} 3$	$1.9578(18)$	$\mathrm{Cu} 2-\mathrm{N} 2$	$2.225(2)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2$	$92.21(7)$	$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{O} 5$	$169.08(8)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 2^{\mathrm{i}}$	$87.79(7)$	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{O} 6$	$91.82(7)$
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$90.23(7)$	$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{N} 2$	$100.68(8)$
$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$87.14(7)$	$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{N} 2$	$95.99(8)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4$	$92.00(8)$	$\mathrm{O} 5-\mathrm{Cu} 2-\mathrm{N} 2$	$94.94(8)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 5$	$86.24(7)$	$\mathrm{O} 6-\mathrm{Cu} 2-\mathrm{N} 2$	$93.66(7)$
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 6$	$165.64(8)$		

Symmetry code: (i) $-x,-y+1,-z$.
with the results in Table 1. Thus, all crystals in this batch are identical to each other. Detailed examinations of the structural changes and a possibility of the phase transition are in progress.

3.3. Structure of (4)

The molecular structure of (4) along with the atomic numbering is shown in Fig. 5. Bond distances and angles are listed in Table 4. Two types of Cu atoms are located in complex (4). The Cu 1 atom is located at the center of inversion of the crystals and is coordinated by two hfac groups equatorially and two bridging 4-methylpyrimidines axially, forming a sixcoordinated octahedron. On the other hand, the Cu 2 atom

Figure 4
Stereoscopic view of the coordination polymer of $(3 b)$.

Table 5
Summary of the structural features of Cu complexes coordinated with $\mathrm{hfac} / \mathrm{NO}_{3}$ and pyrimidines showing magnetic interactions.

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (hfac) $)_{2}$ | | | | | | |
| complexes | | | | | | |

References: (a) this work; (b) Yasui, Ishikawa et al. (2001).
occupying a general position is located at the center of the base of the five-coordinated square pyramid, formed by two equatorial hfac groups and a bridging pyrimidine. The Cu 2 atom deviates from the plane formed by the four O atoms of the hfac groups to the N 2 atom by 0.2149 (9) \AA. This deviation is also shown from the large bond angles of $\mathrm{N} 2-\mathrm{Cu} 2-\mathrm{O}$. The whole structure of the complex is a trinuclei metal complex bridged by two pyrimidines. The lengths of axial $\mathrm{Cu}-\mathrm{N}$ bonds are 2.437 (2) and 2.225 (2) \AA for $\mathrm{Cu} 1-\mathrm{N} 1$ and $\mathrm{Cu} 2-\mathrm{N} 2$, respectively. The plane formed by Cu 1 and O atoms of two hfac groups (plane 1), the plane formed by Cu 2 and O atoms of two hfac groups (plane 2) and the pyrimidine plane (plane 3) are orthogonal to each other with dihedral angles of

Figure 5

ORTEPII (Johnson, 1976) drawing of (4b) with atom numbering. The displacement ellipsoids for non-H atoms are drawn at 50% probability and the H atoms are drawn as spheres with a radius of $0.1 \AA$. Symmetry codes: (i) $-x, 1-y,-z$.
73.10 (6), 79.27 (7) and $83.51(7)^{\circ}$, for planes $1-2,1-3$ and 2-3, respectively.

The crystal structure of (4) is shown in Fig. 6. In the crystals, plane 2 , the base of the square pyramid, overlaps face-to-face to that at (ii) $1-x,-y, 1-z$. The mean distance between planes is 3.725 (3) \AA and the distance of $\mathrm{Cu} 2 \cdots \mathrm{Cu}^{2 i}$ is 4.8273 (15) \AA. The corresponding values at 300 K are 3.996 (6) and 5.326 (19) \AA. The appearance of the paramagnetic property of (4) can be ascribed to the segregated arrangement of trinuclei Cu complexes.

Similar trinuclei Cu complexes bridged by two 5-methylpyrimidines and two 2,3,5-trimethylpyradines were searched from the CSD. The structural feature of the 5 -methylpyrimidine complex is very close to that of (4), including the packing mode (Kogane et al., 1994). The length of the central $\mathrm{Cu}-\mathrm{N}$ bond $(2.051 \AA)$ is shorter than that of (4) and the intermolecular $\mathrm{Cu} \cdots \mathrm{Cu}$ distance $(5.885 \AA$) is longer than that of (4). In the case of the pyradine derivative, the coordination of the hfac groups is cis at both terminal sides with fivecoordinated square pyramids (Kogane et al., 1994). The packing mode of the crystals is quite different from that of (4).

Figure 6
Stereoscopic view of the crystal structure of (4b).

3.4. Relations between magnetic interactions and coordination structure

The structural features of $(\mathrm{hfac})_{2} \mathrm{Cu}^{\mathrm{II}}$ complexes with bridging pyrimidines, as well as those of $\left(\mathrm{NO}_{3}\right)_{2} \mathrm{Cu}^{\mathrm{II}}$ complexes, showing magnetic interactions are summarized in Table 5. In the crystals of the complexes showing ferromagnetic interactions (1), (2), (3) and $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{pm})_{3}$, coordination polymer chains are formed and the coordination mode of the bridging meta N atoms of the pyrimidine moieties is axial-equatorial. On the other hand, the coordination type of the complex, $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pm})_{2}$, showing an antiferromagnetic interaction, is equatorial-equatorial, although the structure is a one-dimensional polymer chain. These facts indicate that the pyrimidine bridge can work as both ferromagnetic and antiferromagnetic couplers. It can be concluded that the coordination modes of the bridging meta N atoms play important roles to determine the differences between magnetic interactions. The electron density study on $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{pm})_{2}$ shows that an unpaired electron of the $\mathrm{Cu}^{\text {II }}$ ion is located in the $d_{x^{2}-y^{2}}$ orbital (Yasui, Takayama et al., 2001). The magnetic coupling can be explained in terms of orbital overlaps between a molecular orbital of the pyrimidine and two $\mathrm{Cu}^{\text {II }} \quad d_{x^{2}-y^{2}}$ orbitals. With appreciable overlaps on both sides of the pyrimidine, the magnetic coupling is expected to be antiferromagnetic. When one N atom of pyrimidine is axially coordinated to the copper(II) ion, there is no orbital overlap between the $\mathrm{Cu}^{\text {II }} d_{x^{2}-y^{2}}$ and $\mathrm{N} n \sigma$ and $p \pi$ orbitals due to orthogonality (Ishida \& Nogami, 1997). Thus, the axialequatorial combination favors the ferromagnetic interaction. Therefore, it is very important that the coordination mode of (3) changes from axial-axial at room temperature to axialequatorial at low temperature, since the magnetic interactions appear at extremely low temperature.

This work was supported in part by a Grant-in-Aid for Scientific Research (No. 08454180) and a Grant-in-Aid for

Scientific Research on Priority Areas 'Molecular Conductors and Magnets' and 'Metal Assembled Complexes' (Area Nos. 730/11 224204 and 401/11 136 212, respectively) from the Ministry of Education, Science, Sports and Culture.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Fan, H.-F. (1991). SAPI91. Rigaku Corporation,Tokyo, Japan.
Ishida, T., Mitsubori, S., Nogami, T., Ishikawa, Y., Yasui, M., Iwasaki, F., Iwamura, H., Takeda, N. \& Ishikawa, M. (1995). Synth. Met. 71, 1791-1792.
Ishida, T., Nakayama, K., Nakagawa, M., Sato, W., Yasui, M., Iwasaki, F. \& Nogami, T. (1997). Synth. Met. 85, 1655-1658.

Ishida, T. \& Nogami, T. (1997). Recent Res. Dev. Pure Appl. Chem. 1, 1-15.
Ishida, T., Nogami, T., Yasui, M., Iwasaki, F., Iwamura, H., Takeda, N. \& Ishikawa, M. (1996). Mol. Cryst. Liq. Cryst. 279, 87-96.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kogane, T., Kobayashi, K., Ishii, M., Hirota, R. \& Nakahara, M. (1994). J. Chem. Soc. Dalton Trans. pp. 13-18.

Molecular Structure Corporation (1992). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rigaku Corporation (1994). AFC Control Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Yasui, M., Ishikawa, Y., Akiyama, N., Ishida, T., Nogami, T. \& Iwasaki, F. (2001). Acta Cryst. B57, 288-295.
Yasui, M., Takayama, R., Akiyama, N., Hashidume, D. \& Iwasaki, F. (2001). Mol. Cryst. Liq. Cryst. In the press.

[^0]: ${ }^{\mathbf{1}}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA0036). Services for accessing these data are described at the back of the journal.

